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1 Defining Homotopy Groups
Homotopy Let f, g : X → Y be cts functions. Then a homotopy between them is a continuos map

H : X × [0, 1] → Y

such that H(−, 0) = f and H(−, 1) = g. This is an equivilence relation, which is moreover compatible
with composition, that is

X
f1,g1−−−→ Y

f2,g2−−−→ Z

where f1 ' g1 and f2 ' g2 then f1 ◦ f1 ' g1 ◦ g2. Note that a homotopy is then an element of

Hom([0, 1]×X,Y ) ∼= Hom([0, 1],Hom(X,Y ))

that is a homotopy is merely a path in Hom(X,Y ) between the two maps.
If A ⊆ X then we call H a homotopy rel (relative) A if H(−, t)|A is independent of A.
A retraction of X onto A ⊆ X is a map X → X such that r(X) = A and r|A = id. A deformation

retract is a retract that is homotopic to the identity on X. Note that in particular this is a homotopy
equvilence of a space onto a subspace.

Category of Triples We now work in the category of triples of spaces, tTop, objects are tripples
x0 ⊆ A ⊆ X, where usually x0 is a point. A map

f : (X,A, x0) → (Y,B, y0)

is a continuous function such that f(x0) ⊆ y0, f(A) ⊆ B, f(X) ⊆ Y . Note that an important subcate-
gory of pTop is the category of pointed spaces with pointed maps, where x0 is a point and A is also
the point x0.

Universal Property of the Quotient If we have ∼ an equivilence relation on a space X and
π : X → X/ ∼ is the quotient map then there is a bijection between{

∼ invariant maps f : X → Y
}
↔

{
maps f̄ : X/ ∼→ Y

}
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the bijection is simply given by f 7→ f̄ ◦ π. This is summarised in the diagram

X

X/ ∼ Y

π
f

f̄

We can apply this to homotopy, as a map X×I → Y . If we have a subspace for example A ⊆ X×I
and a map

(
X × I

)
/A → Y then by the universal property we get a homotopy, nothing more than

a map X × I → Y . We know that this homotopy has to be invariant under the equivalence relation
generated by being in the subspace A. Explicitly we get

X × I

X × I/A Y

π
∃!f

f̄

If we now define 1
Dn+1 ..=

Dn × I

Dn × {1} ∪ Sn−1 × I
.

Figure 1: The quotient of the 2 disk cross an interval giving the three disk.

Then we can apply the observation about homotopies to conflate maps on Dn+1 with homotopies
on Dn. That is given a map Dn+1 → X we get a unique map Dn × I → X, but moreover it must be
invariant on Dn × {1} ∪ Sn−1 × I. The invariance on Dn × {0} means that the homotopy is between
the constant map on Dn and something else, moreover the constant value on Sn−1 × I, thus it is a
homotopy rel the boundary. To summarise we have used the universal property of the quotient to see
that there is a bijection between

{maps homotopic to the constant map rel boundary Dn → X} ↔ {maps Dn+1 → X} ↔ 0 ∈ πn(X,A)

This will be very important in checking the exactness of the LES. The key point is that a map
homotopic to the identity rel the boundary is the zero element in πn(X,A).
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Relative Homotopy Let (X,A, x0) be a triple. p = (1, 0, · · · , 0) ∈ Sn−1 ⊆ Dn is also a triple. The
relative homotopy groups for n ≥ 1 are then

πn(X,A, x0) ..= [Dn, Sn−1, p;X,A, x0]

That is based homotopy classes of base point preserving maps (Dn, Sn−1) → (X,A). That is if we
rephrased our definition of homotopy to be category dependent (i.e. a continuous morphism in some
subcategory of Top) then these are just homotopy classes of maps. Note that the relative homotopy
groups give us the absolute homotopy groups

πn(X) = πn(X,x0) ..= πn(X,x0, x0)

This requires Dn and Sn−1 to map to x0 and so we can descend to the quotient

πn(X) = [Dn/Sn−1, s0;X,x0] = [Sn, s0;X,x0]

So the absolute homotopy groups are maps of spheres into the space as we expect.
Relative homotopy defines a functor, suppressing base points from the notation: If f : (X,A) →

(Y,B) then πn(f) : πn(X,A) → πn(Y,B) is given by

[ϕ] 7→ [f ◦ ϕ]

Group Structures For absolute homotopy we have the notion π0(X,x0) by defining it to be
[∗, ∅, ∅;X,x0, x0] which is homotopy classes of maps ∗ → X with no conditions. That is just the
path components of X.

π1(X,x0) = [[0, 1], {0, 1}, 0;X,x0, x0] has a well defined group structure, indeed it is the funda-
mental group, given by concatenating loops. Consider the quotient of Sn by the equator that is
homeomorphic to Sn−1, call this quotient map q. Then the quotient is homeomorphic to Sn∨Sn. The
sum of two maps can then be written as

f + g ..= (f ∨ g) ◦ q

Likewise for the relative homotopy groups πi for i > 1 the addition is given by

(f + g) ..= (f ∨ g) ◦ q

where c : Dn → Dn ∨Dn is the quotient map given by collapsing the equator Dn−1 ⊆ Dn to a point1.
In the i = 1 case we see that the relative homotopy group is [[0, 1], {0, 1}, 0;X,A, x0], and so is

paths that send 0 to x0. Notice that there is no condition on the location of 1 and so there is no
natural way to compose the maps.

Thus we can see that πn is a functor that lands in Sets for n = 1, groups for n = 2 and Abelian
groups for n > 2.

2 A LES for Pairs
Consider the inclusion i : (A, x0) → (X,x0) and the inclusion j : (X,x0, x0) → (X,A, x0). There is
also the so called boundary map, that is

∂ : Hom((Dn, Sn−1, p), (X,A, x0)) → Hom((Sn−1, Sn−1, p), (X,A, x0))

given by restricting the maps domain. This obviously induces a map up to homotopy and thus a map
on ∂ : πn(X,A) → πn−1(A, x0).

Under our identification of homotopies of Dn and maps on Dn+1 we see that the boundary is

∂(f̄ ◦ q) = f |Dn×{0}

3



Figure 2: The collapsing maps.

Where f̄ is a map on Dn+1 and f is its lifted homotopy.
Given a pointed set (X,x0) then we call the kernel of a map into X simply the preimage of the

special point x0. Note that the category of pointed sets is enriched over itself, that is

Hom((X,x0), (Y, y0))

is a pointed set with the special point being the constant map

X → Y, x 7→ y0

Theorem. There is a long exact sequence

πn(A, x0) πn(X,x0) πn(X,A, x0)

πn−1(A, x0) πn−1(X,x0) πn−1(X,A, x0)

π2(A, x0) π2(X,x0) π2(X,A, x0)

π1(A, x0) π1(X,x0) π1(X,A, x0)

π0(A, x0) π0(X,x0)

in jn

∂n

i∗ j∗

···
i∗ j∗

∂

i∗ j∗

∂

i∗

The first step in proving this long exact sequence is to understand the kernel, that is which maps
are homotopic to the identity. The so called contraction lemma is helpful here:
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Lemma. A map
f : (Dn, Sn−1, s0) → (X,A, x0)

is zero in πn(X,A, x0) iff f is homotopic to the constant map Dn 7→ x0 (definition) iff f is homotopic
relative to Sn−1 to a map with image contained in A, that is ∃g ∈ [f ] ∈ πn(X,A) such that Im(g) ⊆ A.

Proof. ⇐= : Assume such a g exists, then [f ] = [g] ∈ πn(X,A). Note that Dn is contractable
and in particular deformation retracts onto its base point s0. If r : Dn → Dn is such a retraction,
i.e. r(Dn) = s0 (its a retract) such that r is homotopic to the identity on Dn (this is the deformation
part); then clearly b/c it is homotopic to the identity we have

[g] = [g ◦ r]

But r is simply the constant map Dn 7→ s0 and g(s0) = x0 and so g ◦ r : Dn 7→ x0 and is therefore
zero in πn(X,A).

=⇒ : Notice that even though f ' 0, unless f = 0, this homotopy is not rel Sn−1. Thus this
direction is not immediate.

The key is the following homeomorphism: Consider Gt : Dn → Dn × {t} ∪ Sn−1 × [0, 1] ⊆
Dn×[0, 1] given by stretching the disk over the cylinder. The key properties are that ∂Dn = Sn−1 7→
Sn−1 × {0} and that it is a homeomorphism. This defines a map G : Dn × [0, 1] → Dn × [0, 1] that
is a homeomorphism for each t ∈ [0, 1]. 2

Now let F : Dn × [0, 1] → X be the homotopy between f and 0. Then we claim that F ◦ G :
Dn × [0, 1] → X is a homotopy rel Sn−1 from f to a map with image in A.

First we check the image of the map that we homotope to, i.e. F ◦ G(−, 1). This map is just
F |Dn×{1}∪Sn−1×[0,1]. So look at the two peices of the domain, F (−, 1) = 0 and so has image x0 in
particular in A. Again F (s, t) for s ∈ Sn−1 gives the value of a map of tripples (Dn, Sn−1, s0) →
(X,A, x0) and so maps values in Sn−1 to values in A.

Next check the it fixes pointwise Sn−1: Because Sn − 1 is sent to Sn−1 × {0} by G(−, t) for
every t we see that F ◦G is independent of t.

Figure 3: The homemorphism G for n = 2.

Clearly this lemma is saying something like if f is equivalent to something coming from πn(A, x0)
then it must be zero. We now need to check:

ker(in) = Im(∂n+1), n ≥ 0
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Figure 4: The map f being homotoped rel the boundary to g.

ker(∂n) = Im(jn), n ≥ 1

ker(jn) = Im(in), n ≥ 1

which we will do by showing that ker ⊆ Im and Im ⊆ ker for each case.

i∗ and ∂∗: ker(in) ⊆ Im(∂n+1): Let f ∈ πn(A, x0) such that i∗f ' 0 ∈ πn(X,x0). Then take
F : Dn × I → X to be the homotopy from f to 0. Lets check that F sends Dn × {1} ∪ Sn−1 × I
to x0. First F (−, 0) = f ∈ πn(A, x0) so sends the boundary Sn−1 to the basepoint, moreover it is a
homotopy to the zero map so indeed. Therefore by the universal property of the quotient can I conclude

that the homo-
topy doesnt
chaange the
value along the
boundary from
x0 and then go
back?

q ◦ F ∈ πn+1(X,A, x0)

and moreover
∂(q ◦ F ) = F |Dn×{0} = f

ker(in) ⊇ Im(∂n+1): We consider f ∈ πn+1(X,A, x0) and compose

i∗∂∗(f) = f |Dn×{0}

Now we need a homotopy from f |Dn×{0} to 0. This exists by the universal property of the quotient.

j∗ and ∂∗: ker(∂n) ⊆ Im(jn): The statement is essentially that; If the boundary of f is homotopic
to the identity then f is homotopic to a map whose boundary is zero. Let f ∈ πn(X,A, x0) such that
∂f = [∂f ] ' 0 ∈ πn−1(A, x0). Take F : Dn−1 × I → X to be the homotopy from 0 → ∂f , We apply
the universal property of the quotient to get the lift of f , f̂ : Dn−1 × I → X. We then compose these
homotopies

f̂ + F (x, t) ..=

{
F (x, 2t), t ∈ 1

2I

f̂(x, 2(t− 1
2 )), t ∈ [ 12 , 1]

This then corresponds again to a map on the quotient f̂ + F : Dn → X. It is clear that ∂(f̂ + F ) =
F (x, 0) = 0. By construction we have attached a null homotopic map to f and so the result is still
homotopic to f .

ker(∂n) ⊇ Im(jn): Take f ∈ πn(X,x0) and apply both maps

∂∗j∗f = ∂f

But f is from the absolute homotopy group on X which means all of Sn−1 goes to zero, hence ∂f = 0.
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i∗ and j∗: This is essentially the compression lemma. ker(jn) ⊆ Im(in) becuase if a map is in the
kernel of j∗ then by definition it is zero in πn(X,A, x0). Therefore by the lemma it is homotopic rel
the boundary to an element of πn(A, x0), that is a map whose image is contained in A. Hence it is in
the image of i∗.

For Im(in) ⊆ ker(jn), we see that being in the image of i∗ means that there is a map in πn(A, x0)
to which we apply i. Hence the map is homotopic to one whose image is contained in A. Therefore by
the compression lemma it is zero in π(X,A, x0).

3 A LES for Fibrations
Given a bundle (a surjection) E → B we say that it has the homotopy lifting property for a space X if

X × {0} E

X × I B

H̃0

i ∃H̃

H

that is for every homotopy into the base if there is a lift of one of the maps then there is a lift of the
homotopy.

A bundle is a Serre fibration if it has the homotopy lifting property for all X that are CW complexes,
or equivalently for disks. If a space has the homotopy lifting property for all spaces then it is called
a Hurewicz fibration. The homotopy lifting property ensures that the fibers are all homotopic. We
will work in the more general setting of a Serre fibration (b/c all spaces are weakly homotopic to CW
complexes this is largely sufficient for homotopy theory). Consider such a fibration

F ↪→ E
p−→ B

Applying the LES of homotopy groups to the pair (E,F ) gives

πn(F ) → πn(E) → πn(E,F )

There is also a natural map of pairs (E,F ) → (B, ∗) given by p, which enduces a map of homotopy
groups (by functoriality)

πn(E,F ) → πn(B)

f 7→ p ◦ f

We claim that this map is an isomorphism.
The key insight is that the homotopy lifting property is stronger than it first appears. Homotopy

lifting says that fixing a lift of one end of a homotopy will allow you to lift the homotopy but you do
not have control of what the other end will lift to. Diagramatically 3 We can only control the lift of
the first edge, the other lifts are only in the fiber of where we want them to be. That is they project
to what we started with but might be anywhere in the preimage.

If we define the homotopy lifting property of a pair (X,A) to be that given a homotopy H : X×I →
B and a lift of both H(−, 0) and H|A then there is a lift of all of H extending these two conditions,
then

Lemma (Hatcher, Thm 4.41). Homotopy lifting for Dn is equivilent to homotopy lifting for (Dn, ∂Dn)

Proof. The pairs (Dn × I,Dn × {0}) and (Dn × I,Dn × {0} ∪ ∂Dn × I) are homemorphic 2.
This homemorphism means that a homotopy, exactly a map on Dn × I, if we have fixed the first
edge, exactly a lift of the homotopy at Dn × {0} can equally be considered as a map from Dn × I
that has fixed the first edge and the boundary.
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Figure 5: Only control a priori the lift of one of the edges.

In essence this lemma tells us that homotopy lifting allows us to fix not just the lift of p ◦ f but
also of b0 in the diagram of 3. This can now be used to give us control over both ends!

Lemma (Bredon, Thm 6.4). Let E → B be a fibration. The following commutive diagram can be
completed 3

Dn × ∂I ∪ {s0} × I E

Dn × I B

i p∃

H

Note that the map on the top edge is a specified lift of part of F.

Proof: Let K = Dn × I and L = Dn × ∂I ∪ {s0} × I and stare at the following

L L× {0} Dn+1 × {0} ∪ Sn × I L E

K K × {0} Dn+1 × I K B

K × I

ι1 proj f

p

ι2 i◦ϕ

i

∃4.41

ϕ−1◦F

?

H

∼=ϕ F

The idea is that we can lift a homotopy from Dn+1 and so we will include K, a homotopy from Dn,
into the first face of this. Then when we lift the homotopy on this face we are having control over the
whole lift of K. The goal is to give the red arrow, that extends f and projects to H.

Formally: Let F : K×I → K be the strong deformation retract from K×I onto Dn+1×{0}∪Sn×I.
In particular F has the following properties:
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Figure 6: Only control a priori the lift of one of the edges.

• F (−, 0) = idK (retract)

• F (−, 1) ∈ L (onto L)

• ∀l ∈ L,∀t ∈ I we have F (l, t) ∈ L (strong)

By our previous theorem we have a lift of the map H ◦ ϕ−1 ◦ F , which we call ψ. Now we claim that
ψ ◦ i ◦ ϕ ◦ ι2 : K → E (the green) is the desired lift. We need to check that it restricts on L to f and
that when projecting we get H.

p ◦ ψ ◦ i ◦ ϕ ◦ ι2(k) = p ◦ ψ ◦ i ◦ ϕ(k, 0)
(commutativity from Thm 4.41) = HFi(k, 0)

(F is retract) = H(k)

and for l ∈ L

ψ ◦ i ◦ ϕ ◦ ι2(l) = ψ ◦ i ◦ ϕ(l, 0)
(commutativity from Thm 4.41) = f ◦ proj ◦ ι3(l)

(proj is left inverse of ι3) = f(l)

�
Now we can prove the isomorphism we claimed.

Injection: Assume [pf ] = [pg]. Then there is a homotopy between them

H : Dn × I → B

which we specify the lift at Dn×{0} to be f and the lift of Dn×{1} to be g. By the previous theorem
we can lift the whole map and therefore f and g are homotopic.
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Figure 7: Deformation retract of a cylinder onto its ends and an edge.

Surjection: Consider an element f ∈ πn(B). This is a map (Dn, Sn−1, s0) → (B, b0, b0). Apply the
universal property of the quotient to get the coresponding homotopy, to the trivial map. We can lift
the constant map to the constant map into E. Now by homotopy lifting we get a lift of f (considered
as a homotopy), call it f̃ . Then we need to check that this lift is an element of πn(E,F ), however since
pf̃(∂Dn) = b0 we know that the lift is in the fiber over b0, hence by definition in F . So we are done. this might not

be sufficient in
lower degrees
(n=1)
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Figure 8: The strong homotopy lifting property.
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